
Restructuring of the nonlinear and spectra modules in v2.8

J. Lesgourgues

November 22, 2019

Between v2.7 and v2.8, there has been a complete restructuring of internal functions in the spectra.c
and nonlinear.c modules. This will generate punctually a bit of pain for some of the class developers,
because the next merging of their own branch with class v2.8 will generate several conflicts, that this
document helps resolving. However this restructuring - which was planned since a long time - was really
necessary in order to go on with the development of class on a healthier basis, with a more concise,
readable and efficient code.

Goals of the restructuring.

1. To move several functions that had been placed in spectra.c since the first release in 2011,
without a clear logical reason, towards other modules to which they logically belong, namely
perturbations.c and nonlinear.c. This leads to a drastic reduction of redundancy through-
out the code.

2. To rewrite a large part of nonlinear.c in a clearer, more concise and readable style. Essentially,
everything in nonlinear.c has been rewritten excepted some functions belonging to the halofit

and HMcode algorithms.

Modules affected by the restructuring.
Are affected: a small part of perturbations.c, most of nonlinear.c, a large fraction of spectra.c,
a small part of output.c, and just a few lines in the python wrapper files python/cclassy.pxd and
python/classy.pyx. Note that v2.8 contains lots of other new features compared to v2.7: HMcode, the
N-body gauge, a new management of precision parameters, etc. Thus the conflicts that will appear when
merging various branches with v2.8 are not all related to the restructuring discussed here. In particular,
the N-body gauge leads to changes in background.c (e.g. new calculation and storing of rho tot, p tot)
and perturbations.c (e.g. new source functions H T Nb prime, and new correction terms for all transfer
functions of the type delta i and theta i).

Future renaming of two modules.
The new version defines better the true physical role of four central modules in class. In the future, this
role will be better described with new names for nonlinear.c and spectra.c. We did not change the
module names in v2.8 in order to avoid imposing too many changes at the same time. The renaming will
be done softly in a future version, once everybody had time to update their own branches by merging with
of v2.8. While the current restructuring may generate a bit of work on the developer side, the renaming
will be a trivial and painless thing, because we will circulate a script able to convert any branch from the
old to the new naming scheme and vice-versa. Although this is not implemented yet, we summarize the
expected renaming scheme in the following table, while clarifying the role that each of the four modules
is now playing.

1

Old name New name Role & Target

perturbations.c unchanged Computing all sources and transfer
functions in Fourier space, S(k, τ)

nonlinear.c fourier.c Computing two-point statistics in Fourier
space: PL(k, z), PNL(k, z), σ(R, z), etc.

transfer.c unchanged Computing all transfer functions
in harmonic space ∆l(k)

spectra.c harmonic.c Computing two-point statistics
in harmonic space, CXY

`

Keeping full compatibility with previous versions
There are two types of class developers: those who only call external functions and functions in the
python wrapper from their own codes/scripts, and those who do modifications to the internal structure
of the class modules. The first category will not be impacted by the change. Indeed:

1. we have not removed, changed the name or changed the argument list of any external functions (the
functions at the beginning of each module, like for instance spectra pk at z()). Simply, some of
the functions used to contain some actual lines of codes, while they are now just pointing to a new
function in another modules. This is the case for all the functions in the spectra.c module dealing
with some transfer functions TX(k, z), power spectra PX(k, z) or integrated quantities like σ(R, z).
They are now pointing to new functions in the perturbations.c or nonlinear.c module. They
are still working as before, but they write a warning in the standard output, that says that they
are deprecated and that gives the name of the new functions that one should now try to use. If
you find these warnings irritating, you can de-activate them by just commenting the corresponding
lines in spectra.c and recompiling.

2. we have not changed the name nor the argument list of any functions in the python wrapper.
Simply, some functions in python/classy.pyx (like for instance get pk, get pk array, etc.) now
contain a call to the new functions instead of the deprecated functions.

If you are in this first category of developers, you may stop reading this document, because you will be
blind to the changes. The second category of users, and in particular those who had modified nonlinear.c

or spectra.c, will have to solve a few issues when they will merge with v2.8. The rest of this document
is for them and will help to solve conflicts easily.

Tips for merging various older branches into v2.8
If you want to do your merging quickly and without a full understanding of all the restructuring, just
read this section, and ignore the rest of this document. This section should be self-contained. But if you
want to do your merging while having full control and deep undertsanding of what is going on, you may
wish to read first the sections after this one, and come back here later.

Your next merge is likely to generate a moderate amount of conflicts in background.c (related to
other features like the N-body gauge) and in perturbations.c (related both to the restructuring and
other things). If you had not modified nonlinear.c, output.c and python/classy.pyx, you will get no
or very few conflicts there, because the new files will overwrite your old ones. The main trouble should
be with spectra.c and spectra.h. The module has changed so much that git will get lost and will
produce conflicting files for these two that are a total mess, impossible to fix region by region. This
section suggests to avoid this by not merging the new spectra.c and spectra.h in your own ones, but
instead, by overwriting them, while possibly propagating your changes afterwards. We suggest to follow
these steps:

1. Clone a fresh version of your branch in a new directory where you will do the merge. During or

2

after the merge, avoid pushing your commits too quickly to your repository. Then, if things go
wrong, you can always erase this directory and redo everything from scratch.

2. If you have not merged any recent released version in your branch, first merge 2.7.2 in your branch,
in order to have less things to do when merging with 2.8.x.

3. Once this is done, check the differences between your own spectra.c and the one of 2.7.2, with a
diff or git diff. Store the output in a file, e.g. spectra.c.diff. Do the same with spectra.h

and store the change in a spectra.h.diff You could be in one of these cases:

(A) no differences or a few very trivial ones. Then the next steps will go fast!

(B) differences due to the fact that you have added some new specie xx. Then you probably have
new lines that enable to output the transfer functions for these quantities, similar to:

(a) in spectra indices():

class_define_index(psp->index_tr_delta_xx,ppt->has_source_delta_xx,index_tr,1);

(b) in spectra matter transfers():

if (ppt->has_source_delta_xx == _TRUE_) {

delta_i = ppt->sources[index_md]

[index_ic * ppt->tp_size[index_md] + ppt->index_tp_delta_xx]

[(index_tau-psp->ln_tau_size+ppt->tau_size) * ppt->k_size[index_md] + index_k];

psp->matter_transfer[((index_tau*psp->ln_k_size + index_k)

* psp->ic_size[index_md] + index_ic) * psp->tr_size + psp->index_tr_delta_xx]

= delta_i;

delta_rho_tot += rho_i * delta_i;

}

(c) in spectra output tk data():

class_store_double(dataptr,tk[psp->index_tr_delta_xx],ppt->has_source_delta_xx,storeidx);

(d) in spectra output tk titles():

class_store_columntitle(titles,"d_xx",pba->has_xx);

or equivalently

class_store_columntitle(titles,"d_xx",ppt->has_source_delta_xx);

These changes do not need to stay in the new spectra.c, since the module does not deal with
transfer functions anymore! Just keep this information in your log. We will see later what to
do with it.

(C) several other differences. Then you will have to read very carefully the following pages
and think where these other changes should end up after the merge: perturbations.c,
nonlinear.c or spectra.c?

4. Now, get a version of 2.8 cloned somewhere, then go to your own branch, and merge 2.8 inside
your branch. The code will report some conflicts in a few files, and in particular in spectra.c and
spectra.h.

5. Do not try to fix the conflicts in spectra.c and spectra.h, but overwrite these files brutally
with their 2.8 version, using git checkout --theirs source/spectra.c include/spectra.h.
No worries: you are keeping track of your changes in the file spectra diff.log.

6. Fix the conflicts in other files. That should not be harder than with previous releases of new
versions. (still it will probably be the longest step in this list).

7. Go back to spectra.c.diff and spectra.h.diff. If you were in case (A), you have nothing to
do to the new spectra.c and spectra.h, or maybe very trivial things. If you are in case (B), you
need to propagate the changes that you see in spectra.c.diff, but not to the new spectra.c.
They should go instead to the new perturbations.c. Taking the same example as above:

3

(a) the change in spectra indices() does not need not be propagated at all. Indeed, you have
already defined a ppt->index tp delta xx somewhere in perturbations.c, and there are no
more indices psp->index tr ...

(b) the change in spectra matter transfers() does not need to be propagated either. You
should have already something equivalent in perturb sources():

if (ppt->has_source_delta_xx == _TRUE_) {

_set_source_(ppt->index_tp_delta_xx) = y[ppw->pv->index_pt_delta_xx];

}

However you need to propagate a change coming from the N-body gauge option. Now, when
a flag is switched on, the transfer functions computed either in the newtonian or synchronous
gauge are sent to the output after a conversion to the N-body gauge. In order to keep this
option working, you must add a line like:

if (ppt->has_source_delta_xx == _TRUE_) {

_set_source_(ppt->index_tp_delta_xx) = y[ppw->pv->index_pt_delta_xx]

+ (3.*a_prime_over_a)*theta_over_k2; // N-body gauge correction;

}

where the quantity to be put in the parenthesis should be −ρ̄′X/ρ̄X , that could be equal
to 3.*a prime over a (non-relativistic species) or 4.*a prime over a (relativistic species) or
more complicated. This is valid for density transfer functions. For velocity transfer functions,
as you can see in the new code, you should just add theta shift to your new source. When
the N-body gauge option is switched off, both theta over k2 and theta shift are null, and
nothing changes.

(c) the change in spectra output tk data() must be propagated to perturb output data():

class_store_double(dataptr,tk[ppt->index_tp_delta_xx],ppt->has_source_delta_xx,storeidx);

(note the difference with respect to the old line: it is not a psp->index tr ... anymore, but
a ppt->index tp ...)

(d) the change in spectra output tk titles() must be propagated to perturb output titles():

class_store_columntitle(titles,"d_xx",ppt->has_source_delta_xx);

You can also propagate some of the changes seen in spectra.h.diff into spectra.h, but only if
they have to do with the calculation of the Cl’s. If they have to do with the calculation of the P (k, z)
and T (k, z) for new species, they don’t need to be propagated at all, since the spectra.c module
does not deal with these anymore, while perturbations.h should already contain the necessary
indices.

8. At this point, you should essentially be done, apart from a bit of debugging...

The following is more technical and meant for advanced developpers.

New calculation of Fourier transfer functions
By Fourier transfer functions, we refer to transfer functions in Fourier space for density fluctuations
δX(k, τ), velocities θX(k, τ), and metric fluctuations. They are computed when the output list contains
mPk and/or vTk.

• Before v2.8: a grid for these quantities was computed and stored in the perturbation struc-
ture by perturb sources(). Later, spectra matter transfers() had the task of duplicating
this grid in the spectra structure. The function spectra tk at z() was designed to interpo-
late the grid at the values of time τ requested for the output. The spectra.c module also

4

contained two functions spectra output tk data() and spectra output tk titles() that were
called either from the output.c module or from the wrapper. spectra output tk titles() would
return headers for output files or output dictionaries. spectra output tk data() would loop
through the value of time requested for the output, get the transfer functions at these times
with spectra tk at z() and return them in a pointer. Finally, the function output tk() or
the python/classy.pyx function get transfer() would call spectra output tk titles() to get
headers, spectra output tk data() to get values, and write them either in output files or in output
dictionaries.

• In v2.8: the useless duplication step in the spectra.c module is suppressed, and everything is
done in perturbations.c, following the overall principle that all the things that a module can
do (without changing its overall purpose) should be done there, rather than being deferred to an-
other module. The grid of transfer functions is still computed in perturb sources() and stored
in the perturbation structure. The function perturb sources at tau() is able to interpolate the
grid at any time (this function existed before but was never used, now it is playing its normal
role). The functions perturb output data() and perturb output titles() play the role previ-
ously attributed to spectra output tk data() and spectra output tk titles(). In particular,
perturb output data() gets the transfer functions at the values of time requested in output us-
ing perturb sources at tau(). The functions output tk() or the python/classy.pyx function
get transfer() have the same names and arguments as before, but now they call perturb output titles()

to get headers, perturb output data() to get values. Thus the whole process is more condensed
and straightforward.

New calculation of linear PL(k, z)

• Before v2.8: the linear power spectrum was computed twice!

1. The full calculation leading to the output was in spectra.c. The function spectra k and tau()

defined the grid of output (k, τ) values, while spectra pk() did the actual calculation of
PL(k, τ) including all options and components (m, cb, total, and decomposed in adiabatic /
isocurvature modes) and stored the result in the spectra structure. The functions spectra pk at z()

and spectra pk at k and z() were able to interpolate in that grid, and to return PL(k, z) at
arbitrary (k, z). The function spectra fast pk at kvec and zvec() returned PL(k, z) for an
input grid of (k, z) values.

The function output pk() used the local functions output open pk file() and output one line of pk()

to handle the opening and the writing in output files, and called spectra pk at z() to get
the values to be written in the files.

Finally, python/classy.pyx contained several functions pk(), pk cb(), pk lin(), pk lin cb(),
get pk(), get pk cb(), get pk lin(), get pk lin cb(), get pk and k and z() that all ex-
tracted the output using spectra pk at k and z(). It also contained get pk array(), get pk cb array(),
that were wrappers for spectra fast pk at kvec and zvec().

2. The linear power spectrum was actually needed by Halofit in nonlinear.c before reach-
ing spectra.c. Thus there was a redundant calculation of PL(k, τ) inside the function
nonlinear pk l() (although a simplified one, without the decomposition into adiabatic /
isocurvature modes). The results were stored in local variables passed to Halofit rather than
in the structure, thus they were not reused afterwards. This redundancy was not elegant,
but the impact on performances was minor (the function nonlinear pk l() was very fast to
evaluate).

• In v2.8: the useless duplication step in the spectra.c module is suppressed, and everything is done
in nonlinear.c, following the overall principle that all the things that a module can do (without
changing its overall purpose) should be done there, rather than being deferred to another module.

5

Of course it sounds weird to compute the linear spectrum in a module called nonlinear.c, but
this will sound better when the module will be renamed fourier.c. It is important to note that
in the old nonlinear.c and spectra.c, there were lots of arrays and functions with a suffix m for
total matter perturbations and cb for CDM+baryon perturbations. This is not the case anymore,
because the code loops everywhere over an index index pk that can refer to m-type or cb-type
perturbations. Thus many arrays have one more dimension than before, e.g. pk[index pk][...],
and many functions have an extra input argument index pk .

The grid of PL(k, z) values is now computed in nonlinear pk linear() and stored in the nonlin-
ear structure. Inside nonlinear pk linear(), the step of extracting transfer functions for the
matter or baryon+cdm fluctuations is deferred to a function nonlinear get source(). This
function also knows how to extrapolate the results at higher k than pre-computed values: this
functionality is needed for HMcode. Several functions can then read and interpolate the grid of
pre-computed PL(k, z): nonlinear pk at z() does the same as the old spectra pk at z() but for
only one input value of index pk, while nonlinear pks at z() gives the results for all the available
index pk types. The same holds for nonlinear pk at k and z() and nonlinear pks at k and z()

that replace spectra pk at k and z(). The function nonlinear pks at kvec and zvec() replaces
spectra fast pk at kvec and zvec().

In spectra.c, nothing else is done with the linear power spectrum, but we have kept the (now depre-
cated) functions spectra pk at z(), spectra pk at k and z() and spectra fast pk at kvec and zvec(),
that just encapsulate the new functions nonlinear pks at z(), nonlinear pks at k and z() and
nonlinear pks at kvec and zvec().

Later, in the output.c module, the output pk() function works as before, using the local functions
output open pk file() and output one line of pk() to handle the opening and the writing in
output files, but now calling nonlinear pk at z() to get the values to be written in the files.

Finally, in python/classy.pyx, the functions pk(), pk cb(), pk lin(), pk lin cb(), get pk(),
get pk cb(), get pk lin(), get pk lin cb(), get pk and k and z() are still there but now ex-
tracting data through nonlinear pk at k and z(), while get pk array(), get pk cb array(), are
some wrappers for nonlinear pks at kvec and zvec().

New calculation of non-linear PNL(k, z)

• Before v2.8: the goal of nonlinear.c was not to compute PNL(k, z) but only the non-linear rescaling
factors RNL(k, z) = (PNL(k, z)/PL(k, z))1/2. These are useful not only for the final output of
PNL(k, z), but also for computing all the large scale structure Cl’s (number count, galaxy shear,
CMB lensing) including non-linear corrections. Thus PNL(k, z) was computed for a first time in
nonlinear.c, but only RNL(k, z) was stored in the nonlinear structure. PNL(k, z) was computed a
second time in spectra.c, given PL(k, z) and RNL(k, z), such that there was some redundancy.

More precisely, nonlinear init() would call nonlinear halofit() to get PNL(k, z), and then
would compute and store RNL(k, z) in the nonlinear structure. Then, in spectra.c, the same
spectra pk() in charge of computing PL(k, z) would also compute PNL(k, z) if requested, and store
it in a grid in the spectra structure. This grid could be read and interpolated by spectra pk nl at z()

and spectra pk nl at k and z(). The function spectra fast pk at kvec and zvec(), already
seen before, would also work for the nonlinear spectrum, thanks to an input flag set either to linear
or non-linear.

In output.c, the function output pk nl() handled nonlinear spectra and extracted the data using
spectra pk nl at z().

Finally, python/classy.pyx contained several functions pk(), pk cb(), get pk(), get pk cb(),
get pk and k and z() that would return the linear spectrum if non-linear corrections were not
requested, and would otherwise return PNL(k, z) using spectra pk nl at k and z(). It also con-
tained get pk array(), get pk cb array(), that were wrappers for spectra fast pk at kvec and zvec().

6

• In v2.8: the re-computing of PNL(k, z) in the spectra.c module is suppressed, and everything
is done in nonlinear.c, following the overall principle that all the things that a module can do
(without changing its overall purpose) should be done there, rather than being deferred to another
module.

For the calculation of PNL(k, z), nonlinear init() calls either nonlinear halofit() or nonlinear hmcode().
At the end of this step, both PNL(k, z) and RNL(k, z) are stored in the nonlinear structure. Dur-
ing these steps, the code computes all the requested types of spectra, m and cb, by looping over
index pk. The table of PNL(k, z) values can be read and interpolated by the very same functions as
for the linear spectrum: nonlinear pk at z(), nonlinear pks at z(), nonlinear pk at k and z(),
nonlinear pks at k and z(), nonlinear pks at kvec and zvec(), because they all have an input
flag pk output set either to linear or non-linear.

In spectra.c, nothing else is done with the non-linear power spectrum, but we have kept the (now
deprecated) functions spectra pk nl at z(), spectra pk nl at k and z() and spectra fast pk at kvec and zvec(),
that just encapsulate the new functions nonlinear pks at z(), nonlinear pks at k and z() and
nonlinear pks at kvec and zvec() called with the flag pk output set to non-linear.

Later, in the output.c module, the function output pk() now handles both linear and non-linear
spectra, because it has the input flag pk output. It extracts PNL(k, z) using nonlinear pk at z()

with pk output set to non-linear.

Finally, in python/classy.pyx, the functions pk(), pk cb(), pk lin(), pk lin cb(), get pk(),
get pk cb(), get pk lin(), get pk lin cb(), get pk and k and z() are still there but now ex-
tracting data through nonlinear pk at k and z(), while get pk array(), get pk cb array(), are
some wrappers for nonlinear pks at kvec and zvec().

New calculation of σ(R, z) and similar derived quantities

• Before v2.8: spectra.c contained two functions spectra sigma() and spectra sigma cb(), that
computed σ(R, z) for all requested types (total matter, cdm+baryons) by integrating the PL(k, z)
stored in the spectra structure over k for a fixed z. These functions could be called from anywhere,
but they were called at least inside spectra init() to compute σ8 ≡ σ(8, 0) and possibly σ8cb,
and to store them in the spectra structure.

python/classy.pyx contained some functions sigma() and sigma cb() that were some wrappers
for spectra sigma() and spectra sigma cb(). It also contained two functions sigma8() and
sigma8 cb() extracting the values stored in the spectra structure.

• In v2.8: everything related to σ’s and similar quantities is now done in nonlinear.c, which allows
to call the new functions from the Halofit or HMcode algorithm.

The actual calculation is done in an internal function nonlinear sigmas() that takes in input a
value of R and a tabulated PL(k). The redshift is not explicitly passed in input, because PL(k) is
supposed to be a linear spectrum at the redshift of interest. The input PL(k) does not need to be
tabulated on the same values of k used for storing quantities in the nonlinear structure: it can be
better sampled, extrapolated to larger k’s, etc. These features are very useful for HMcode, that
needs some very precise σ’s, and uses fine sampling and extrapolation for that. nonlinear sigmas()

also takes in input a variable sigma output which belongs to a new enumeration: its value refers
to different things to compute, either output sigma for the plain σ(R), output sigma prime for
σ′(R), or output sigma disp for the velocity dispersion used by HMcode. The user can easily
enlarge this list to compute more derived quantities.

However, the function that is the most exposed to the users is the external function nonlinear sigmas at z().
It has a more standard argument list. Instead of a linear power spectrum, nonlinear sigmas at z()

takes a redshift in input. Then it gets PL(k, z) from nonlinear pk at z(), and it passes it to
nonlinear sigmas() to get the result (still with the same options sigma output, and with an

7

input index index pk to get either the m or cb quantities). In nonlinear init() there is a call
to nonlinear sigmas at z() to compute σ8 and possibly σ8cb, and store them in the nonlinear
structure.

Finally, nonlinear sigma at z() is another internal function meant just for compatibility with pre-
vious versions, but nonlinear sigmas at z() should be preferred due to its better list of arguments.
nonlinear sigma at z() has roughly the same arguments as the deprecated spectra sigma() and
spectra sigma cb(). It also uses nonlinear sigmas() for the calculation of σ(R, z) (but without
the option to get other quantitites like σ′).

In spectra.c, nothing else is done with the σ quantities, but we have kept the (now deprecated)
functions spectra sigma() and spectra sigma cb(), now just encapsulating nonlinear sigma at z().

The wrapper python/classy.pyx still contains the same functions sigma() and sigma cb(), that
are now wrappers for nonlinear sigmas at z(). It also stills contain the functions sigma8() and
sigma8 cb() extracting the values stored in the nonlinear structure.

What remains in spectra.c?
The new spectra.c only contains the calculations related to all Cl spectra, plus a list of deprecated func-
tions that encapsulate the new improved functions located in nonlinear.c. The deprecated functions
are:
spectra pk at z()

spectra pk at k and z()

spectra pk nl at z()

spectra pk nl at k and z()

spectra fast pk at kvec and zvec()

spectra sigma()

spectra sigma cb()

8

